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1. Introduction

SU(3) structure manifolds permit a non-vanishing global spinor, hence are a natural start-

ing point for compactifications of type II supergravities to 4 dimensional theories with

fermions. This observation has triggered much work aimed at utilizing the constraints

arising from the reduced structure group both in the study of the 10d theory and the

resulting 4d theory, including [1 – 12]. In [1], a program was initiated to perform a re-

duction on such manifolds, modelled on Calabi-Yau reductions, to obtain an effective four

dimensional action described within the framework of N = 2 gauged supergravity. While

yielding tantalizing results, the status of this approach is still unclear with regard to the

following main points:
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• The reduction algorithm takes as its starting point a system of forms satisfying a set

of differential constraints. These forms have not been characterized intrinsically, nor

has an explicit system of such forms (aside from the trivial Calabi-Yau case) been

exhibited to date.

• It has not been demonstrated that solutions to the effective 4d theory lift to 10d

solutions.

• It is not clear to what extent this approach captures all light degrees of freedom.

Note the interrelation between these points: if one demonstrates that the expansion forms

chosen indeed yield an orbit on field space on which 10d solutions lie, then these solutions

will give rise to extrema of the 4d effective action as well, and hence these extrema will

lift. In addition, one might encounter additional 4d extrema that do not lift. To rule out

this possibility requires guaranteeing that all light degrees of freedom are captured by the

reduction ansatz.

In this note, we wish to address the first two of these questions in the context of internal

manifolds exhibiting nearly Kähler structure. The central simplifying feature of this class

of SU(3) structure manifolds is that the invariant 2- and 3-forms J and Ω are eigenforms of

the Laplacian associated to the metric they specify. Hence, the set of forms they must be

expanded in is clear.1 We will perform the reduction on a 1 dimensional family of nearly

Kähler structures, and demonstrate that the supersymmetric solution of the resulting 4d

gauged supergravity lifts to 10d.

Here is a summary of the organization and the results of this paper: we review the

general setup of SU(3) flux compactifications of type II supergravity to 4d N = 2 gauged

supergravity in section 2. In section 3, we briefly survey some facts on nearly Kähler

manifolds from the mathematics literature. We turn to the question of the appropriate

choice of expansion forms in section 4. We argue in this section that a metric ansatz

parametrizing a family of nearly Kähler manifolds in conjunction with the ansatz reviewed

in section 2 for the expansion forms constrains us to a reduction which gives rise to 4d

gauged supergravity with a single vector multiplet and only the universal hypermultiplet.

Note that a richer 4d theory might well be accessible upon weakening either of these two

premises. The 4d theory we obtain involves both electric and magnetic gauging, and

we discuss the formulation of N = 2 supergravity permitting this structure in section 5.

We also review quaternionic Kähler manifolds and the moment map construction in this

section. Up to this point, the discussion takes place purely at the level of actions. In a

very nice paper, [11] demonstrated recently that N = 1 constraints imposed on 4d field

configurations lift to the corresponding 10d constraints, as worked out e.g. in [14] ([15]

perform a similar analysis from an N = 1 point of view). Based on this work, we recover

in section 6 the nearly Kähler field configurations of type IIA supergravity preserving 4

supercharges discussed in the literature [3 – 5, 14] from our 4d action. As is well-known, it is

not guaranteed that supersymmetric field configurations solve the equations of motion. [5]

1Note that in the context of 11d supergravity, a similar simplification arises when reducing on weak G2

holonomy manifolds [13].
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demonstrates in 10d that, up to a minor restriction, supersymmetric field configurations

of type IIA preserving 4 supercharges do have this property. In section 6, we provide

the required argument in 4d for our setup, and then proceed to demonstrate explicitly

that by imposing N = 1 constraints, we obtain a solution to the 4d equations of motion.

In appendix A and B, we summarize some facts on special Kähler manifolds and our

conventions and notation. Appendix C lies somewhat outside the main line of development

of this note. In it, we complete the proof sketched in [16] regarding a property of the

variation of harmonic 2-forms on Calabi-Yau manifolds.

What is missing in these considerations is an analysis of to what extent our reduction

ansatz is capturing all light degrees of freedom of the system (cf. the discussion in [16]). The

consequence of not considering all light modes would be that some (non-supersymmetric)

4d solutions might not lift to 10d solutions: a field configuration minimizing the 4d action

could be destabilized in a direction which is omitted from the reduction ansatz. This

issue should be settled by considering the reduction ansatz at the level of the equations of

motion, along the lines of [17].

2. The setup

SU(3) structure can be obtained as the intersection of an almost symplectic (Sp(6, R)) and

an almost complex (SL(3, C)) structure. These structures can in turn be encoded in a 2-

form J and 3-form Ω respectively. This similarity with Calabi-Yau geometry has inspired

reduction ansätze in the literature, starting with [1], in which J and Ω are expanded in the

same set of internal two and three forms as the RR and NS field strengths,

J = viωi ,

Ω = ZAαA − GAβA .

J and Ω are not closed in general, and in fact, their failure to be closed is parametrized by

the 5 torsion classes which specify the SU(3) structure [18],

dJ = −3

2
Im(W1Ω̄) + W4 ∧ J + W3 ,

dΩ = W1J
2 + W2 ∧ J + W̄5 ∧ Ω .

Hence, the expansion forms cannot be harmonic forms as in conventional Calabi-Yau re-

ductions. Instead, they were proposed to obey the following differential system [1, 2, 19],

d†ωi = 0

dωi = mi
AαA + eiAβA

dαA = eiAω̃i; dβA = −mi
Aω̃i

dω̃i = 0 . (2.1)

Starting with [1], the reduction algorithm based on such a system of forms was demon-

strated to give rise to 4d N = 2 gauged supergravity, with the integers eiA and mi
A mapping

– 3 –
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to charges of the 4d matter fields. Much earlier [20], a reduction algorithm involving un-

deformed expansion forms in the presence of fluxes was demonstrated to have the same

4d manifestation (giving rise to different pairings of gauge and matter fields; we review

the resulting gaugings in section 5). For this reason, eiA and mi
A are sometimes referred

to as geometric fluxes. [16] emphasizes that if this procedure is to correspond to a non-

linear ansatz, the expansion forms must be assumed to be moduli dependent (just as the

harmonic forms on which Calabi-Yau reductions are based exhibit such dependence). [16]

then outlines which properties these forms must satisfy, given such moduli dependence, in

order for the reduction of the metric sector to yield the two special geometry manifolds

(the scalar manifold of the vector multiplets as well as the base of the scalar manifold of

the special quaternionic manifold, the scalar manifold for the hypermultiplets) required by

4d supergravity.

An obvious omission in this program to date is an intrinsic definition of the forms

ωi, αA, βA the reduction is to be based on. For the case of nearly Kähler manifolds, we

redress this issue by explicitly constructing a set of expansion forms in section 4.

3. Nearly Kähler manifolds

Of the many equivalent definitions of nearly Kähler manifolds, we choose to introduce them

as SU(3) structure manifolds for which the only non-vanishing torsion class is W1 [21]. The

merit of this class of SU(3) structure manifolds for us is that the fundamental 2- and 3-form

J and Ω are eigenforms, to a fixed eigenvalue determined by W1, of the Laplace-Beltrami

operator associated to the metric the forms determine. This hence answers the question

of among which finite set of forms the expansion forms introduced in the previous section

must be chosen.

3.1 Properties and examples of nearly Kähler manifolds

Nearly Kähler manifolds are classified by Nagy [22]: a complete and simply connected

nearly Kähler manifold is the Riemannian product of a Kähler and a strictly nearly Kähler

(i.e. non-Kähler) manifold. All compact nearly Kähler manifolds in dimensions 2 and 4

are automatically Kähler. Only 4 compact strictly nearly Kähler manifolds are known in

dimension 6, and all are homogeneous,

S6 ≃ G2/SU(3) ,

CP
3 ≃ Sp(2)/SU(2) × U(1) ,

S3 × S3 ≃ SU(2) × SU(2) ,

F (1, 2) ≃ SU(3)/U(1) × U(1) ,

(F(1,2) is the complete flag manifold on C
3, i.e. the space of tuples (V1, V2) of vector

subspaces of dimension 1 and 2, such that V1 ⊂ V2). Finally, it is a theorem [23] that this

is an exhaustive list of dimension 6 homogeneous strictly nearly Kähler manifolds.
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3.2 Deformations of strictly nearly Kähler structure

Infinitesimal deformations of nearly Kähler structures are studied in [24]. This analysis is

somewhat orthogonal to the study in this paper, as these authors fix the normalization of

W1, which is the only modulus we keep in our analysis. For the rest of this subsection,

when we speak of deformations of nearly Kähler structure, we will mean at fixed W1.

The result of [24] is that on 6 dimensional strictly nearly Kähler manifolds other than

S6, the space of infinitesimal deformations of the nearly Kähler structure is isomorphic

to the eigenspace of the Laplace-Beltrami operator, restricted to the space of co-closed

primitive (1,1) forms, to the eigenvalue 12 (this is for W1 = −2i). These (1,1) forms

parametrize the variation of J . It is not known whether these deformations are obstructed.

S6 requires a slightly different treatment [25]. Unlike all other 6d strictly nearly Kähler

manifolds, a deformation of the nearly Kähler structure on S6 does not necessarily involve

a simultaneous deformation of the metric and the almost complex structure. In fact, for

the round metric g0, [24] determine the space of infinitesimal deformations and find that

it is unobstructed, and coincides with the space of isometries of g0, modded out by the

isotropy group at the nearly Kähler structure. In other words, nearly Kähler deformations

of g0 are obtained by fixing g0 and acting by its isometries on the almost complex structure.

4. The choice of expansion forms for nearly Kähler manifolds

Nearly Kähler manifolds have W1 as their only non-vanishing torsion element,

dJ = −3

2
Im (W1Ω̄) ,

dΩ = W1J
2 .

Note that by proper choice of the phase of Ω, we can choose W1 to be purely imaginary.

On such manifolds, both J and Ω are eigenforms of the Laplacian △ = d†d + dd† =

−(∗d ∗ d + d ∗ d∗), to eigenvalue 3|W1|2. Using ∗Ω = −iΩ and ∗J = 1
2J2, and the fact

that W4 = 0 implies that J is co-closed, this follows upon a straightforward calculation.

Further, any manifold admitting a nearly Kähler structure admits a one real dimensional

family of such structures, obtained by rescaling J , W1, and Ω appropriately (note that

in the mathematics literature, the normalization of W1 is often fixed, thus choosing a

representative of this family).

These two observations are the key ingredients in our study.

The task is now to choose a basis of expansion eigenforms at each point in moduli

space that satisfies the properties outlined in [16].

Within the context of Calabi-Yau like reductions reviewed in section 2, the deformation

theory of nearly Kähler manifolds forces us to restrict consideration to a single expansion

2-form, and 2 expansion 3-forms, yielding a 4d theory of a single vector multiplet and

only the universal hypermultiplet. To see this, note that by our discussion in section 3, a

deformation of nearly Kähler structure other than on S6 is fully determined by deformations

of J . The reduction ansatz based on the differential system (2.1) however necessarily yields

at least twice as many 3-forms as 2-forms. Adding degrees of freedom to J hence necessarily

– 5 –
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adds degrees of freedom to Ω, and leads us out of the class of nearly Kähler metrics.2 On

S6, including the isometries in our considerations would increase the number of vector fields

and take us out of the context of N = 2 theories in 4d. We hope to return to the question

of incorporating such additional degrees of freedom in the reduction in the future.

For now, given a nearly Kähler structure to eigenvalue λ, we define the expansion form

ω as

ω :=
k√
λ

J

||J || ,

with arbitrary coefficient k (below, we will see that k = e10, with e10 the coefficient in the

expansion (2.1) of dω). The virtue of this definition is that it is invariant under rescaling

of J , i.e. ω is constant on the one dimensional family of nearly Kähler structures we are

considering: on co-closed 2-forms,

△2(vJ) =
1

v
△2(J) ,

where the metric dependence of △2 is indicated in parentheses. Hence,

△2(vJ)vJ = λvJvJ

=
λ

v
vJ ,

i.e. λvJ = λJ
v . Finally, for the norm of 2-forms,

||ρ||vJ =
√

v||ρ||J ,

hence

||vJ ||vJ = v3/2||J ||J ,

from which the claim follows. By W4 = 0, d†J = 0, hence ω is co-closed as well. To define

a dual 4-form ω̃, such that
∫

ω ∧ ω̃ = 1, we calculate the normalization constant

g :=

∫

ω ∧ ∗ω

=
k2

λ
,

and set

ω̃ :=
1

g
∗ ω .

We can define our set of expansion 3-forms via

β :=
1

e10
dω , α := − ∗ β

2Note that a restriction to ‘rigid’ Ω also arose in the context of reduction of the heterotic string in [26].
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for an arbitrary constant e10. By

∫

α ∧ β = − 1

e2
10

∫

∗dω ∧ dω

=
k2

e2
10

=
!

1 ,

we see that the ‘metric flux’ e10 merely offsets the normalization constant in the definition

of ω, hence has no geometric significance. In the 4d theory, shifting k = e10 corresponds

to scaling the gauge coupling constant at the expense of the normalization of the charges.

There is no natural integral structure in this scheme.

The conditions on the expansion forms listed in [16] are easily seen to be satisfied

by this set of forms: the compatibility conditions between the 2- and 3-forms reduce to

ω ∧ dω = ω ∧ ∗dω = 0 and follow from ω ∼ J and the compatibility of J and Ω. Due to

our restriction to rigid Ω, the (*)ed conditions (i.e. the conditions resulting from moduli

dependence of the expansion forms) on the 3-forms are trivial. The (*)ed condition on

the 2-forms, vi∂jωi = 0, reduces in the case of a single expansion form to constancy of

the expansion form on moduli space, and this was the condition we took to motivate our

definition of ω above.

The triple intersection number is obviously constant for moduli independent ω. We

can express this number as

∫

ω ∧ ω ∧ ω =
1

v3

∫

J ∧ J ∧ J

= 2
||J ||2
v3

=
2

λ3/2||J || .

As a consistency check, note that the last expression is indeed invariant under rescaling of J .

We next determine the coefficients in Ω = Zα−Gβ in terms of v (this is the analogue of

having Ω fixed by its normalization in the case of Calabi-Yau manifolds with rigid complex

structure). Noting that

dΩ = Z ω̃ = W1J ∧ J = 2W1vg ω̃

and choosing a normalization of Ω such that W1 is purely imaginary, λ = 3|W1|2 = −3W 2
1 ,

Z = 2i
v√
3λ

= 2i

√

Cv3

6
,

and by ∗Ω = −iΩ,

G = −iZ = 2
√

V .
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We conclude this section by determining the triple intersection number for S6. [21]

determines the eigenvalue λ in terms of the Ricci scalar of the manifold,

λ =
2

5
R .

Note that this is the smallest eigenvalue of the Laplacian on co-closed 2-forms on S6 [27, 28].

Using V = 1
6Cv3 and λ = 2

Cv , together with VS6 = π6/2r6

Γ( 6

2
+1)

and RS6 = 6(6−1)
r2 yields

CS6 =

(

1

6π

)
3

2

.

5. Electric-magnetic gauging and the 4d action

Arguing from a 10d vantage point, we can put forth the following criterium for the existence

of a minimum of the gauged supergravity potential: both electric and magnetic gauging

must be present (we use this intuitive terminology here for convenience; this section is

largely devoted to reviewing how this terminology can be made precise). The argument

is simple: fluxes contribute to the energy of the field configuration via the RR kinetic

terms ∼
∫

Fn ∧∗Fn. A simple counting of powers of the metric establishes that a rescaling

of the metric gmn 7→ λ2gmn results in a rescaling of this contribution by λ2(3−n). The

contributions of both F0 and F2 hence scale inversely, as compared to the contributions

of F4 and F6, under rescaling of the size of the compactification manifold. Therefore,

in order for the manifold to be stabilized at finite radius, fluxes for n both larger and

smaller than 3 must be present. Stabilization at finite radius translates into a minimum

of the 4d potential at finite Kähler moduli. Now, n = 3 is also the bound that determines

whether fluxes result in electric or magnetic gauging in the 4d effective theory [29], thus

completing the argument.3 While simultaneous electric and magnetic gauging is possible

at the level of the equations of motion, it cannot naively be implemented in a local action.

The most familiar formulation of gauged N = 2 supergravity [33] in terms of vector and

hypermultiplets is hence not sufficient for our purposes. Luckily, starting with [29], we

have learned how to implement these equations of motion by including tensor multiplets

in the N = 2 action [34 – 37] . In this section, we wish to review this development and its

relation to the very intuitive ‘symplectic completion’ [38] of the standard formalism [33],

in particular the elegant packaging of compactification data in terms of symplectically

completed killing prepotentials as worked out in [7, 9].

5.1 Quaternionic geometry of the hypermultiplet sector

A quaternionic Kähler manifold of dimension 4n is by definition an oriented Riemannian

manifold with holonomy group contained in Sp(1)⊗ Sp(n). The quaternionic metrics that

3Note that there is an interesting parallel here with the no-go theorem [30 – 32] regarding partial breaking

of supersymmetry in N = 2 supergravity for Minkowski solutions. The observation there is that partial

supersymmetry breaking in the conventional framework of N = 2 supergravity is not possible unless a

degenerate choice of the symplectic vector (XI , FI) is made. Under a symplectic rotation, the degeneracy

of this choice can be undone, but only at the expense of generating magnetic gaugings.

– 8 –
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arise at tree level in Calabi-Yau compactifications were worked out in [39]. These are

coordinatized by the dilaton φ, axion a (dual to B), the complex structure moduli zi (in

the case of IIA) of the Calabi-Yau, and the axions ξA, ξ̃A stemming from RR fields. They

are termed special quaternionic metrics, as the RR axions are fibered over the special

geometry directions coordinatized by the complex structure moduli. The metric takes the

explicit form4

huvdqu ⊗ dqv = gīdzi ⊗ dz̄̄ + dφ ⊗ dφ

+
e4φ

4

[

da +
1

2
(ξ̃AdξA − ξAdξ̃A)

]

⊗
[

da +
1

2
(ξ̃AdξA − ξAdξ̃A)

]

−e2φ

4
(ImM−1)AB

[

dξ̃A + MACdξC
]

⊗
[

dξ̃B + MBDdξD
]

, (5.1)

where gī and M are determined by special geometry data (M is the mirror of the gauge

coupling matrix N , see appendix A). With regard to the metric 1
2ǫabǫAB, [39] introduces

the vielbein

U =

(

u e −v̄ −Ē

v E ū ē

)

(5.2)

on the complexified tangent space of the manifold, on which the two factors of the holonomy

act on the left, right respectively. Of the entries in this matrix, only u, v will be relevant

for us in the following,

u = − i√
2
e

K
2

+φZA(dξ̃A + MABdξB) ,

v = dφ − i
e2φ

2

(

da +
1

2
(ξ̃AdξA − ξAdξ̃A)

)

.

The connection of the metric decomposes according to the Sp(1) ⊗ Sp(n) factorization of

the holonomy,

dU = ω ∧ U − U ∧ ∆ . (5.3)

The relevant quantity for us is the Sp(1) connection ω = i
2ωx(ǫσxǫ−1), with σx the Pauli

matrix basis of su(2), given by

ω1 = i(ū − u) , ω2 = −(u + ū) ,

ω3 =
i

2
(v − v̄) + . . . ,

the . . . subsuming directions in the special geometry base.

Quaternionic Kähler manifolds M are a local version of hyperkähler manifolds, in that

they locally exhibit a triplet of almost complex structures Jx satisfying the quaternionic

4The normalization here differs slightly from the one in [29], which took an unconventional normalization

of the RR field strengths as a starting point of the reduction, see also [40]. This choice only becomes relevant

when comparing 4d and 10d solutions.
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algebra. For our purposes, it is convenient to phrase this structure in terms of an SU(2)

principal bundle V on M , with connection the ω introduced in (5.3). Locally, the bundle

V ⊗ Λ2T ∗M is trivialized by a triplet of flat sections Kx, x = 1, 2, 3,

∇Kx = dKx + ǫxyzωy ∧ Kz = 0 ,

related to the almost complex structure via Kx(·, ·) = h(Jx·, ·). The Kx are called hy-

perkähler forms, though unlike the hyperkähler case, they are not global objects.

The quaternionic metric (5.1) has a set of isometries given by

kc = ∂a , kA = −1

2
ξA∂a + ∂ξ̃A

, kA =
1

2
ξ̃A∂a + ∂ξA . (5.4)

These span a Heisenberg algebra,

[kA,kB] = δA
B kc ,

with kc as central element. Quaternionic Kähler manifolds permit a generalization of the

moment map construction [41]: despite not being globally defined, the hyperkähler forms

Kx can be used to introduce moment maps for isometries k via

∇Px
k = −ιkKx ,

where ι signifies contraction. The moment maps Px are called killing prepotentials. Note

that due to the local nature of Kx, we are forced to introduce a triplet of moment maps,

which are local sections of V, and that the covariant derivative appears on the l.h.s. of the

moment map equation, rather than the more familiar straight differential. Due to this, the

definition of the moment maps are possible for isometries which preserve the Hyperkähler

forms only up to a so-called SU(2) compensator W z
k ,

LkKx = ǫxyzKyW z
k

.

It is a pleasant surprise that the seeming complication of having a non-trivial SU(2) bundle

allows for an algebraic, rather than a differential, relation between the killing vectors, the

SU(2) compensator, and the killing prepotentials,

ǫxyzKyW z
k = −ǫxyz(ιkωy −Py

k
)Kz .

As the isometries (5.4) of the metric we consider in fact preserve the quaternionic structure

without the need for a compensator [38], this relation becomes

Px
k = kuωx

u . (5.5)

In the context of flux compactifications on SU(3) structure manifolds, which of the

isometries (5.4) is gauged, and by which vector, is encoded in the RR and NS background

field strengths,

F0 = m , F2 = miωi, F4 = eiω̃
i , F6 = e

vol

V
,

H = pAαA − qAβA ,

– 10 –
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as well as the integers appearing in the differential system (2.1) specified by the expansion

forms. Which integers correspond to which gauging [29, 1, 19] is easy to remember based

on the index structure: if we denote the isometry gauged by the ith vector multiplet as ki,

and by the graviphoton as k0, then

k0 = pAkA + qAkA − ekc ,

ki = eiAkA + mA
i kA − eikc ,

k̃0 = mkc ,

k̃i = mikc , (5.6)

(note the necessity to distinguish between k0, the killing vector gauged by the graviphoton,

and kA=0). The relevance of the tilded killing vectors is that these are gauged magnetically.

Hence, whenever we consider a reduction in the presence of fluxes F,G such that
∫

X6
F∧G 6=

0, the non-gravitational sector of the N = 2 4d action cannot be described, as in [33],

purely in terms of vector and hypermultiplets [29]: at the level of the equations of motion,

such 10d backgrounds give rise to 4d hyperscalars that are charged both electrically and

magnetically under the same gauge field.

5.2 Dualizing scalars to tensors to accommodate magnetic charges

The observation that considering compactifications in the presence of F0, F2, F4, F6 flux

yields scalar fields charged electrically and magnetically under the same gauge field is first

made in [29]. The resolution to the problem of capturing this setup in a local action is

also presented in [29]: the 4d action can be formulated by dualizing the culprit doubly

charged scalars to tensor fields.5 More specifically, one can gauge the isometry ∂a of the

conventional N = 2 action electrically. As this does not break the shift symmetry of the

action in a, one can next dualize a to a tensor B. Finally, the obtained action can be

deformed by adding couplings between the gauge fields and the tensor B parametrized by

the erstwhile magnetic charges of a,

F I = dAI + mIB ,

with I = (0, i). [29] demonstrates that precisely this action is obtained upon reduction,

by refraining from the conventional dualization to a scalar of the spacetime components of

the NSNS B-field. Finally, the authors of that paper demonstrate that the potential they

obtain from the reduction is precisely the one that was originally suggested in [38], the

naive symplectic completion of the potential presented in [33],

V = 4eKhuv(X
Iku

I − k̃uIFI)(X̄
Iku

I − k̃uI F̄I)

−
[

1

2
(ImN )−1 IJ + 4eKXIX̄J

]

(Px
I − P̃KxNKI)(Px

J − P̃LxN̄LJ) .

5The authors of [42] take a different approach to this problem: they introduce both electric and magnetic

gauge potentials in the action, together with gauge symmetries tied to tensor fields to compensate for the

surplus in degrees of freedom. It is an intriguing question whether such an action can be obtained upon

reduction, taking the formulation of the 10d supergravity action developed in [43] as a starting point.
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Note that this potential does not depend on the scalar fields being dualized.

The results of [29] are not quite sufficient for our purposes, as the deformation (2.1)

we are considering is to gauge the isometry kA in addition to kc, but this isometry is

broken upon dualizing a to a tensor. The resolution to this problem is a simple coordinate

redefinition [37]. By replacing a by â,

â = a − 1

2
ξAξ̃A ,

the isometries kA become simple shift symmetries of ξ̃A (more generally, we can of course

also choose the definiton of â to allow the gauging of kA for some A). After gauging

both ∂ã and ∂ξ̃A
electrically, they can hence be dualized to tensors, and the ‘magnetic’

deformations introduced as before.

Since [29], the modifications to the conventional N = 2 gauged supergravity action [33]

in the presence of tensor multiplets have been extensively studied [34 – 37]. In particu-

lar, [36] derives the full N = 2 action together with its supersymmetry variations in the

generality we require.6 That the resulting action is the one one obtains upon reduction

from IIA has not been demonstrated completely yet, though many components of a general

proof are in place [29, 1, 2, 19, 44, 7, 45, 16, 9]. Rather than compactifying the bosonic

action, the authors of [7, 9] take the gravitino transformation properties as a starting point.

They derive the 4d gravitino mass matrix Sab, and utilize the relation [33]

Sab =
i

2
e

1

2
Kσx

abPx (5.7)

to obtain expressions for the symplectically completed quaternionic killing prepotentials

Px,

Px = Px
I XI − P̃xIFI . (5.8)

In the remaining part of this section, we will verify in a straightforward calculation that

the potential and the supersymmetry transformations of the fermions as worked out in [36]

can indeed be expressed in terms of the generalized killing prepotentials (5.8).

In [36], the fermion independent terms that appear in the supersymmetry transforma-

tions of the fermions

δψaµ = ∇µǫa − Sabe
−φγµǫb ,

δζα = Na
αǫa ,

δλia = W iabǫb

are

Sab =
i

2
e

K
2 σx

abω
x
Λ(eΛ

I XI − mΛIFI) ,

W iab = igīσx abωx
Λ(eΛ

I f̄ I
̄ − mΛI h̄̄I) ,

Na
α = 2 e

K
2 UΛ

a
α(eΛ

I XI − mΛIFI) .

6[36] first dualizes a set of scalar fields to tensors and then deform the action electrically and magnetically,

with deformation parameters eI
Λ, mIΛ. For the situation we are considering, this is equivalent to first gauging

isometries, as parametrized by charges eI
Λ, dualizing, and then deforming magnetically [37].
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Λ here is a tensor multiplet index. It takes on the values corresponding to the two dualized

quaternionic directions â, ξ̃.7 ǫa is a section of the bundle A ⊗ S+X, where A is the

associated bundle (for the fundamental representation) to the SU(2) principal bundle V
introduced in the previous subsection, and S+X denotes the positive chirality spin bundle

to the 4d spacetime manifold (i.e. it is a spacetime spinor with SU(2) R-symmetry index). ǫa

has opposite chirality. The special Kähler ingredients in the above equations are explained

in appendix A.

By considering cases which do not require dualization, we arrive, comparing to (5.6),

at the following identification of parameters, eâ
0 = −e0, eâ

i = −ei, eξ̃A
0 = qA, eξ̃A

i = eiA,

mâ
0 = m0, mâ

i = mi.

Since we are not rotating the vielbein U by passing from a to â, the connection trans-

forms in a simple fashion. Explicitly, ω1 and ω2 remain unchanged, while

ω3 =
e2φ

2
(dâ − ξAdξ̃A) + . . . ,

and compared to (5.7), using (5.5), we obtain the identification Px
I = ωx

ΛeΛ
I , P̃x I = ωx

ΛmΛI .

5.3 Our 4d theory

Given our choice of expansion ansatz as described in section 4, the internal components of

H, G2 and G4 are necessarily cohomologically trivial,

H int = b dω = bβ , Gint
2 = 0 , Gint

4 = ξ dα + ξ̃ dβ = ξ ω̃ .

The only honest fluxes we have access to are

Gint
0 = m , Gint

6 = e
vol

V
.

We can read off the isometries being gauged (in the sense explained in the previous sub-

section) from (5.6). The generalized killing prepotentials, which will feature prominently

in the next section, are

P1 = 0

P2 = −eφt ,

P3 = −e2φ

2

[

X1e1øξ + X0e0 + F0m
0
]

= −e2φ

2

[

te1øξ + e +
1

6
Ct3m

]

.

The RR field strengths discussed so far satisfy the Bianchi identities (d−Hflux)G = 0.

As we are considering the case without H-flux, all G must be closed, as realized by our

ansatz. It is often convenient to also work with an alternative basis of RR fields, defined

via

F = eBG .

7As we will not be considering magnetic charges for ξ̃, we could equally well keep the scalar variable and

gauge its shift symmetry, see previous footnote.

– 13 –



J
H
E
P
1
1
(
2
0
0
7
)
0
2
6

These satisfy the Bianchi identities (d−H)F = 0. The constraints on the RR fields coming

from SUSY variations are more succinctly formulated in terms of the F basis, while the

relations between charges and fluxes is more direct in the G basis.

In components, the two bases are related by

F0 = G0 = m = f0 ,

F2 = G2 + B ∧ G0 = bm ω = f2 ω ,

F4 = G4 + B ∧ G2 +
1

2
B ∧ B ∧ G0

=

(

ξ +
1

2
Cb2m

)

ω̃ = f4 ω̃ ,

F6 = G6 + B ∧ G4 +
1

3!
B3 ∧ G0

=

(

e + bξ +
Cb3m

6

)

1

C
ω ∧ ω ∧ ω = f6

vol

V
.

6. Lifting supersymmetric 4d solutions

In this section, we demonstrate that the supersymmetric solutions of our 4 dimensional

effective action lift to the 10d nearly Kähler solutions which have been derived from a 10d

point of view in [3 – 5, 14]. Note that a similar goal is pursued in [8], but with a focus on

an N = 1 formulation in 4d.

In this section, we first apply the general analysis of [11] to our setup. To compare to

the 10d analysis of [14], we solve the N = 1 equations arising from setting the 4d fermion

variations to 0 to express the fluxes in terms of essentially the 4d cosmological constant.

As expected from the analysis of [11], we find agreement with the 10d analysis of [14].

We then re-express our results in a more natural way with regard to the 4d theory, by

expressing all moduli fields in terms of the G0 and G6 flux parameter. Finally, we verify

explicitly that the solutions to the N = 1 constraints indeed minimize the 4d potential.

6.1 Solving the 4d N = 1 constraints

The calculations in this subsection are a specialization of the analysis that appears in

section 4 of [11]. The starting point is requiring the vanishing of the supersymmetry

transformations of the gravitino ψAµ, hyperinos ζα, and gauginos λiA,

δǫψaµ = 0 ,

δǫζα = 0 ,

δǫλ
ia = 0 . (6.1)

As noted in subsection 5.2, ǫa is a section of A⊗S+X. Choosing a local trivialization of A
and a section ǫ of S+X satisfying the killing spinor equation ∇µǫ = 1

2µγµǫ∗, we can locally

set
(

ǫ1

ǫ2

)

=

(

a

b

)

ǫ ,
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with the normalization |a|2 + |b|2 = 1.

Let’s first deal with the factors a and b. It is straightforward to check [11] that the

hyperino equations yield

ā(P1 − iP2) − 2b̄P3 = 0 ,

b̄(P1 − iP2) + 2āP3 = 0 ,

while the gravitino equations are equivalent to

ā(P1 − iP2) − b̄P3 = −ie−
K
2

+φaµ ,

b̄(P1 − iP2) + aP3 = ie−
K
2

+φbµ .

Together, these equations imply [11] (|a|2 − |b|2)µ = 0. Since µ = 0, i.e. a Minkowski

vacuum, is not compatible with e 6= 0,m 6= 0 (these give rise to source terms in Einstein’s

equation), we can conclude

|a|2 − |b|2 = 0 .

Next, imposing this condition on the phases, the gaugino variation yields [11]

Re
(

āb(P1
I − iP2

I )
)

= 0 .

Since we have P1 = 0 and P2
I ∈ R, this forces āb ∈ R, hence

a = b ,

and the gravitino equations take the simple form

1

2
P2 = iP3 = 2a2µeφ−K

2 . (6.2)

With these conditions in place, let us now turn to solving the equations (6.1). It proves

computationally convenient [11] and facilitates comparison to the 10d literature [3 – 5, 14],

to first determine the solution to the N = 1 constraints in terms of the parameter µ. The

gaugino equation yields

σAB
x nB

(

(ImN )−1IJ(Px
J −NJKP̃xK) + 2eKX̄IPx

)

= 0 .

Upon utilizing the gravitino equations (6.2), this is [11]

−(ImN )−1 IJP2
J − i(ImN )−1 IJ(P3

J −NJKP̃3 K) = 12e
K
2

+φa2µX̄I .

This equation evaluates to

− 1

2V

(

ie2φf6 + 1
6e2φCmv3 + 2beφ

i
3e2φv2f4 + ie2φbf6 + 2

3eφ(v2 + 3b2)

)

=
3
√

2√
V

eφµ̃

(

1

b − iv

)

,
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where for convenience, we have absorbed the factor a by defining µ̃ = a2µ. Separating into

real and imaginary parts, we obtain

f6 = 6 −
√

2V e−φµ̃I ,

vf4 = 18
√

2V e−φµ̃R ,

and

f0 = −
(

2b

3
√

V
+ 6

√
2µ̃R

)

e−φ

√
V

, (6.3)

v2 + 3b2 = 9
√

2V (µ̃Rb + µ̃Iv) . (6.4)

The equation

P2 = 4a2µeφ−K
2

yields

µ̃R = − b

8
√

2V
, µ̃I = − v

8
√

2V
, (6.5)

and with the above, P2 = 2iP3 is then identically satisfied. Plugging into (6.4), we finally

obtain

b2 =
1

15
v2 .

Introducing the 10 dimensional dilaton via e−φ10 = e−φ
√

V
, we can now summarize the

above findings,

W1 = i

√

λ

3
= −8i

3

√
2µ̃I ,

H = b dω = 4
√

2µ̃RRe Ω ,

F0 = 10
√

2µ̃Re−φ10 ,

F2 = f0b ω =
2
√

2

3
e−φ10 µ̃IJ ,

F4 = 3
√

2e−φ10 µ̃RJ ∧ J ,

F6 = −
√

2e−φ10 µ̃IJ ∧ J ∧ J ,

where we have used ω̃ = 1
C ω ∧ ω, and vol

V = 1
C ω ∧ ω ∧ ω. As expected from the general

analysis of [11], we have been able to reproduce the results in particular of [14] from a

4d calculation. A comment is in order regarding the warp factor. Our reduction ansatz

assumes a constant warp factor. To be precise, the notion of a constant warp factor has

no invariant meaning, as such a factor can always be absorbed in the metric. As such,

the factor A which appears in [14] is naturally incorporated in µ; indeed e2Ads2
AdS(Λ) =

ds2
AdS(e−2AΛ), where Λ ∼ |µ|2.

From the point of view of the 4d theory, it is more natural to express the 4 dimensional

fields v, b, φ, ξ in terms of the flux parameters m and e (and thus to demonstrate which
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‘moduli are fixed’, though of course, ‘moduli’ is a misnomer in this context). Reorganizing

the above equations, we obtain

v3
s =

9

16

√
15

e

Cm
,

bs = − 1√
15

vs ,

ξs =
4

15
Cmv2

s ,

eφs =

√
15

2Cmv2
s

, (6.6)

with µ̃s given by evaluating (6.5) on this supersymmetric field configuration.

6.2 Minimizing the 4d potential

We would now like to demonstrate that the solutions (6.6) to the N = 1 constraints satisfy

the 4d equations of motion, i.e. minimize the 4d potential. We first pursue a general

approach as outlined in [30] and particularly [46]. The starting point is the supersymmetry

variation of the action. This vanishes order by order in the fermion fields. Consider

a bosonic supersymmetric field configuration (Φs,Ψs = 0), with Φ = (φi) collectively

denoting all bosonic fields, and analogously Ψ = (ψi) the fermions. Now focus on the

supersymmetric variation of the action to first order in the fermions and evaluate this on

Φs, keeping the fermionic fields general. By definition of Φs, we obtain

(δSUSYI[Φs])1st order =

∫

∑

i

δL

δφi
[Φs,Ψ = 0] δφi[Φs,Ψ] = 0 .

Two obstructions separate us from concluding that the field configuration Φs satisfies the

equations of motion: to conclude that the integrand vanishes, we must rule out total

derivative terms, and to then conclude that each summand vanishes separately, we must

ensure that the variations δφi[Φs,Ψ] are linearly independent in the vector space spanned

by the fermions.

Let us now apply these arguments to our setup. Since we are only considering constant

field configurations, the first condition is satisfied. The second must be checked explicitly.

Since the potential does not depend on the dualized scalars, we only need to consider

the variations of the scalars in the vector multiplet and the two remaining scalars (after

dualization) in the hypermultiplet. These variations are [33, 36]

δzi = λ̄iaǫa ,

δqu = Uu
aα(ζ̄αǫa + ǫαβǫabζ̄βǫb) ,

with Uu
aα the inverse of the vielbein introduced in (5.2). Note that U generally satisfies the

reality constraint

(Uu
aα)∗ = ǫabǫαβUu

bβ ,
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as can be explicitly verified for (5.2). Together with

(ζ̄αǫa)† = ζ̄αǫa ,

this guarantees the reality of δqu.

The variations δzi are clearly independent. With ǫ1 = ǫ2, the variations of δqu for

u = φ, ξ are

δφ = Re (ζ̄1ǫ1) − Re (ζ̄2ǫ1) ,

δξ = −2e−φs
[

(Im (ζ̄1ǫ1) − Im (ζ̄2ǫ1)
]

.

These are likewise independent. Hence, our supersymmetric field configuration is guaran-

teed to be a solution of the equations of motion.

As a check on this reasoning, we now proceed to evaluate the potential explicitly and

check that it is minimized by our solution.

The potential determined in [36] can be expressed in the form

V = 4eKhuv(X
Iku

I − k̃uIFI)(X̄
Iku

I − k̃uI F̄I)

−
[

1

2
(ImN )−1 IJ + 4eKXIX̄J

]

(Px
I − P̃KxNKI)(Px

J − P̃LxN̄LJ) ,

which is the naive symplectic completion of the potential presented in [33], and was first

proposed in [38].

The explicit form of the potential in our setup is

V =
1

4Cv3

[

e4φ(3e2 + 6ebξ + Cemb3 +
1

12
C2m2(v2 + b2)3 +

+Cmb2(v2 + b2)ξ + (v2 + 3b2)ξ2) + e2φ(−5v2 + 3b2)

]

.

(6.7)

Note that setting m = 0 removes all terms that increase with increasing v, as predicted by

the scaling argument presented in section 5.

Plugging the solution (6.6) of the N = 1 constraints into (6.7), we obtain

V (vs, bs, ξs, φs) = −3e2φs |µs|2 ,

as required by the Ward identities relating the N = 2 scalar potential to the squares of the

fermion variations [30, 47, 35],

δa
b V = −12S̄caScb + gīW

i caW ̄
cb + 2NA

α Nα
B .

By our reasoning above, the solution {vs, bs, ξs, φs} to the N = 1 constraints should

also extremize the potential. Given the explicit form of the potential (6.7), it is easy to

check that this is indeed the case, and that the extremum is a minimum.8

8To check that the extremum is a minimum, we ascertain that the determinant of the hessian is non-zero

for any value of C, e, m, then verify numerically that all eigenvalues are positive for a fixed (arbitrary) choice

of these constants.
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A. Special geometry

We here collect some formulae for the special geometry sector for convenience.

In terms of a holomorphic prepotential F , the Kähler potential is given by

e−K = i(X̄IFI − XI F̄I) ,

where FI = ∂IF . In the vector multiplet sector,

e−K = 8V =
1

6

∫

J ∧ J ∧ J .

The metric here evaluates to

Gij =
1

4V

∫

ωi ∧ ∗ωj .

f I
i and hiI are defined via

e−
K
2

(

f I
i

hiI

)

= ∇i

(

XI

FI

)

= (∂i + ∂iK)

(

XI

FI

)

.

Regarding the covariant derivatives, recall that a special Kähler manifold M is in particular

a Hodge manifold, i.e. comes equipped with a holomorphic hermitian line bundle L → M

with hermitian connection ∂iK, of which XI , FI are local sections [48 – 50].

The period matrix N [51, 49] is specified by the properties

FI = NIJXJ , hIi = N̄IJfJ
i .

In terms of a prepotential, it is given by

NIJ = F̄IJ + 2i
(Im F )IKXK(Im F )JLXL

XK(Im F )KLXL
.

An identity we need is [49]

f I
i fJ

̄ gī = −1

2
(ImN )−1 IJ − eKX̄IXJ .
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We now evaluate these expressions for our setup. The tree level prepotential describing

a single vector multiplet is given by

F = − 1

3!
C

X3
1

X0
,

with X0 = 1,X1 = b + iv, where the triple intersection number can be expressed as

C =

∫

ω ∧ ω ∧ ω

=
2

λ3/2||J || .

It is convenient to express the special geometry quantities in terms of the invariant C and

the modulus v, in particular,

||J ||2 =
Cv3

2
,

e−K =
8

6

∫

J ∧ J ∧ J

=
8

3
||J ||2 =

4

3
Cv3 ,

V =
1

6
Cv3 ,

g = ||ω||2 =
1

v2
||J ||2 =

Cv

2
,

G =
g

4V
=

3

4v2
.

For the cubic prepotential (A.1), the period matrix evaluates to

N =

(

−1
6C

(

2b3 + i(v3 + 3vb2)
)

1
2Cb(b + iv)

1
2Cb(b + iv) −1

2C(2b + iv)

)

.

The gauge coupling matrix is then

(ImN )−1 = −8eK

(

1 b

b 1
4G + b2

)

.

B. Conventions and notation

B.1 Indices

(σx)a
b are the standard Pauli matrices, i.e. satisify [σx, σy] = 2iǫxyzσz. Their indices are

raised and lowered by ǫab, ǫab, with ǫabǫ
bc = −δc

a and ǫ12 = −1. ǫαβ denotes the matrix

ǫab ⊗ idn, with idn the n dimensional identity matrix. On tensors (not spinors!) indices are

raised and lowered by contraction with ǫab and ǫαβ.
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sector index geometric significance physical significance

special Kähler
i special geometry affine enumerates vector multiplets

I special geometry projective enumerates gauge fields

quaternionic Kähler

u quaternionic coordinate enumerates matter fields

α Sp(n) holonomy enumerates hyperinos

a Sp(1) holonomy enumerates supersymmetries

x su(2)

A local quaternionic enumerates hypermultiplets

Λ dualized directions enumerates tensors

Table 1: Indices explained.

B.2 The Hodge star

The Hodge star operator is defined, given an orientation dx1 ∧ . . . ∧ dxn, via

∗(dx1 ∧ . . . ∧ dxm) = dxm+1 ∧ . . . ∧ dxn .

In particular, on an even dimensional manifold, (∗2)
2 = 1, (∗3)

2 = −1, where ∗n denotes the

Hodge star acting on n-forms. We extend the Hodge star operator linearly to
∧n(T ∗M)C.

With the local expressions Ω = dz1∧dz2∧dz3 and J = i
∑

i dzi∧dz̄ ı̄, dzi ∼ dxi + idyi, and

the standard orientation dx1 ∧ dy1 ∧ . . ., the relations ∗Ω = −iΩ and ∗J = 1
2J ∧ J follow.

C. Lichnerowicz

Consider the equation

i
∂gab̄

∂vi
= ωi ab̄ + vj ∂

∂vi
ωj ab̄ , (C.1)

describing the metric variation on a Calabi-Yau manifold under variation of the Kähler

form. Based on restrictions on metric variations imposed by preserving Ricci flatness, [16]

presents an argument for the vanishing of the second term on the r.h.s. of this equation.

This argument must be refined, as it neglects a gauge condition in considering metric

variations. We do so here.

The following equation holds for variations of the Ricci tensor (see section 19 of [52])

under variations δgab = hab of the metric,

2δRab = △Lhab + [D(k(h))]ab , (C.2)

where

k(h)a = ∇bhab −
1

2
∇ah ,

(DA)ab = ∇aAb + ∇bAa ,

h = gabhab, and △L is the Lichnerowicz Laplacian. When written out in component form,

in terms of covariant derivatives and contractions with the Riemann tensor, △L acting on
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SnT ∗M and the ordinary de Rham Laplacian △ = d†d + dd† acting on
∧n T ∗M have the

same form. By Ebin’s slice theorem [53], we can restrict attention to metric deformations

that satisfy ∇bhab = 0 (this is referred to as de Donder gauge in the physics literature).

Upon this gauge choice, [54] demonstrates that h is necessarily constant for any variation

of an Einstein structure (Lemma 7.1). With this in place, we can conclude from (C.2) that

variations of the metric preserving Ricci flatness require

∂gab̄

∂vi
dza ∧ dz̄b̄

to be harmonic. As we have not demonstrated that the metric variation (C.1) satisfies

the gauge condition ∇bhab = 0, we are forced to work with the full expression (C.2) for

variation of the Ricci form.

To this end, fix a complex structure Ja
b . By Yau’s theorem, for any Kähler class9 [ω]

specified by coordinates (vi), a unique Kähler form ω(v) exists such that the associated

metric

gab(v) = −Jc
aωcb(v)

is Ricci flat. Hence, d
dvgab(v) must lie in the kernel of the operator appearing in (C.2),

△LJc
a∂vωcb + ∇a∇dJc

d∂vωcb + ∇b∇dJc
d∂vωca −∇a∇bh = 0 .

Passing to complex coordinates, we obtain

0 = △LJµ
ρ ∂vωµν̄ + ∇ρ∇σJµ

σ ∂vωµν̄ + ∇ν̄∇µ̄J σ̄
µ̄ ∂vωσ̄ρ −∇ρ∇ν̄h

= i△L∂vωρν̄ + i∇ρ∇µ∂vωµν̄ − i∇ν̄∇µ̄∂vωµ̄ρ −∇ρ∇ν̄h

= i△∂vωρν̄ + i∇ρ∇µ∂vωµν̄ + i∇ν̄∇µ̄∂vωρµ̄ −∇ρ∇ν̄h .

We have dropped the L in the last line by the comment above. Anti-symmetrize the last

line with regard to ρ and ν̄. The result is

0 = △∂vω + (∂∂† + ∂̄∂̄†)∂vω

= (2∂†∂ + 3∂∂† + ∂̄∂̄†)∂vω .

Now,

0 = ((2∂†∂ + 3∂∂† + ∂̄∂̄†)∂vω, ∂vω)

= 2||∂∂vω||2 + 3||∂†∂vω||2 + ||∂̄†∂vω||2 .

In particular, ∂vω must be co-closed, hence its Hodge decomposition cannot contain an

exact component. As the ∂
∂vi ωj ab̄ are exact, we conclude

vj ∂

∂vi
ωj ab̄ = 0 .

9In this appendix, we denote the Kähler form by ω to distinguish it clearly from the complex structure

Ja
b .
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I.H.E.S. 10 (1961) 5.

[53] D. Ebin, The manifold of Riemannian metrics, in Proc. of Symposia in Pure Math., Global

Analysis, S.S. S. Chern ed., XV (1968) 11.

[54] M. Berger and D. Ebin, Some decomposition of the space of symmetric tensors on a

Riemannian manifold, J. Diff. Geom. 3 (1969) 379.

– 25 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C108%2C117
http://jhep.sissa.it/stdsearch?paper=09%282005%29016
http://jhep.sissa.it/stdsearch?paper=09%282005%29016
http://arxiv.org/abs/hep-th/0507289
http://arxiv.org/abs/hep-th/0611020
http://jhep.sissa.it/stdsearch?paper=03%282005%29066
http://arxiv.org/abs/hep-th/0411279
http://jhep.sissa.it/stdsearch?paper=03%282007%29026
http://arxiv.org/abs/hep-th/0608171
http://arxiv.org/abs/hep-th/0703201
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB359%2C705
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C133%2C163
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB444%2C92
http://arxiv.org/abs/hep-th/9502072
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C203%2C31
http://arxiv.org/abs/hep-th/9712042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB245%2C89

